
Combine the power of Apache Spark and Python to build effective big data applications
The PySpark Cookbook is for you if you are a Python developer looking for hands-on recipes for using the Apache Spark 2.x ecosystem in the best possible way. A thorough understanding of Python (and some familiarity with Spark) will help you get the best out of the book.
Apache Spark is an open source framework for efficient cluster computing with a strong interface for data parallelism and fault tolerance. The PySpark Cookbook presents effective and time-saving recipes for leveraging the power of Python and putting it to use in the Spark ecosystem.
You'll start by learning the Apache Spark architecture and how to set up a Python environment for Spark. You'll then get familiar with the modules available in PySpark and start using them effortlessly. In addition to this, you'll discover how to abstract data with RDDs and DataFrames, and understand the streaming capabilities of PySpark. You'll then move on to using ML and MLlib in order to solve any problems related to the machine learning capabilities of PySpark and use GraphFrames to solve graph-processing problems. Finally, you will explore how to deploy your applications to the cloud using the spark-submit command.
By the end of this book, you will be able to use the Python API for Apache Spark to solve any problems associated with building data-intensive applications.
This book is a rich collection of recipes that will come in handy when you are working with PySpark
Addressing your common and not-so-common pain points, this is a book that you must have on the shelf.
Auteur(s): Lee, Denny • Drabas, Tomasz
Editeur: Packt Publishing
Année de Publication: 2018
pages: 321
ISBN: 978-1-78883-536-7
eISBN: 978-1-78883-425-4
Cet ouvrage est présent dans ce(s) bouquet(s): Analyse des Données - Commerce International - Economie de l'Afrique - Economie de l'Energie - Economie des Inégalités